首页 | 本学科首页   官方微博 | 高级检索  
     


ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZva16
Authors:B. Hansen  M. Bokranz  P. Schönheit  A. Kröger
Affiliation:(1) FB Biologie/Mikrobiologie, Philipps-Universität, D-3550 Marburg/Lahn, Federal Republic of Germany;(2) Present address: Institut für Mikrobiologie, J. W. Goethe-Universität, Theodor-Stern-Kai 7, Haus 75A, D-6000 Frankfurt, FRG
Abstract:We have addressed the question, whether the reduction of caffeate in Acetobacterium woodii strain NZva16 is coupled to ATP synthesis by electron transport phosphorylation. The following results were obtained: 1. Cultures of A. woodii with H2 and CO2, grew to greater cell densities, when caffeate was also present. Caffeate was reduced to give hydrocaffeate and less acetate was formed. The cell yield based on the amount of caffeate reduced was approximately 1 g dry cells/mol. 2. Non-growing bacterial suspensions catalyzed the reduction of caffeate by H2. The specific activity (0.2–1.0 mgrmol · min–1 · mg–1 bacterial protein) was as high as expected for a catabolic reaction. 3. The ATP content of bacteria incubated, with H2 increased from < 1 to about 7 mgrmol per g cellular protein on the addition of caffeate. The ATP yield was calculated as 0.06 mol ATP · mol–1 caffeate from the initial velocity of ATP formation and the activity of caffeate reduction. Valinomycin together with nigericin inhibited ATP formation and caused a 2–3-fold increase of the activity of caffeate reduction. Protonophores were without, effect. 4. Caffeate in the presence of H2 caused the uptake of tetraphenylphosphonium cation by the bacteria. The uptake was abolished by valinomycin plus nigericin, and was considerably enhanced by monensin. Protonophores were without effect, even in the presence of monensin. It is concluded that caffeate reduction by H2 is coupled to ATP formation by electron transport phosphorylation. However, the failure of protonophores to prevent phosphorylation and TPP uptake cannot be explained.Abbreviations Caffeate 3,4-Dihydroxycinnamate - Hydrocaffeate 3,4-dihydroxyphenylpropionate - TPP+ tetraphenylphosphonium cation - FCCP carbonylcyanide-4-trifluoromethoxyphenylhydrazone - TTGB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazol - TCS 3,5,3prime,4prime-tetrachlorosalicylanilide
Keywords:Acetobacterium woodii  Caffeate reduction  ATP formation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号