首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cholesterol attenuates and prevents bilayer damage and breakdown in lipoperoxidized model membranes. A spin labeling EPR study
Authors:Megli Francesco M  Conte Elena  Ishikawa Takashi
Institution:Dipartimento di Biochimica e Biologia Molecolare E. Quagliariello, Università di Bari, e Istituto di Biomembrane e Bioenergetica, CNR, Via E. Orabona, 4-70126 Bari, Italy.
Abstract:The stabilizing effect of cholesterol on oxidized membranes has been studied in planar phospholipid bilayers and multilamellar 1-palmitoyl-2-linoleoyl-phosphatidylcholine vesicles also containing either 1-palmitoyl-2-glutaroyl-phosphatidylcholine or 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-phosphatidylcholine oxidized phosphatidylcholine in variable ratio. Lipid peroxidation-dependent membrane alterations in the absence and in the presence of cholesterol were analyzed using Electron Paramagnetic Resonance spectroscopy of the model membranes spin labelled with either cholestane spin label (3-DC) or phosphatidylcholine spin label (5-DSPC). Cholesterol, added to lipid mixtures up to 40% final molar ratio, decreased the inner bilayer disorder as compared to cholesterol-free membranes and strongly reduced bilayer alterations brought about by the two oxidized phosphatidylcholine species. Furthermore, Sepharose 4B gel-chromatography and cryo electron microscopy of aqueous suspensions of the lipid mixtures clearly showed that cholesterol is able to counteract the micelle forming tendency of pure 1-palmitoyl-2-glutaroyl-phosphatidylcholine and to sustain multilamellar vesicles formation. It is concluded that membrane cholesterol may exert a beneficial and protective role against bilayer damage caused by oxidized phospholipids formation following reactive oxygen species attack to biomembranes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号