首页 | 本学科首页   官方微博 | 高级检索  
     


Pyridoxamine protects proteins from damage by hypohalous acids in vitro and in vivo
Affiliation:1. Graduate Program in Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;2. Division of Immunobiology and Center for Systems Immunology, Cincinnati Children''s Hospital Medical Center, Cincinnati, OH 45229, USA;3. Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA;4. Division of Infectious Diseases, Cincinnati Children''s Hospital Medical Center, Cincinnati, OH 45229, USA
Abstract:Diabetes is characterized, in part, by activation of toxic oxidative and glycoxidative pathways that are triggered by persistent hyperglycemia and contribute to diabetic complications. Inhibition of these pathways may benefit diabetic patients by delaying the onset of complications. One such inhibitor, pyridoxamine (PM), had shown promise in clinical trials. However, the mechanism of PM action in vivo is not well understood. We have previously reported that hypohalous acids can cause disruption of the structure and function of renal collagen IV in experimental diabetes (K.L. Brown et al., Diabetes64:2242–2253, 2015). In the present study, we demonstrate that PM can protect protein functionality from hypochlorous and hypobromous acid-derived damage via a rapid direct reaction with and detoxification of these hypohalous acids. We further demonstrate that PM treatment can ameliorate specific hypohalous acid-derived structural and functional damage to the renal collagen IV network in a diabetic animal model. These findings suggest a new mechanism of PM action in diabetes, namely sequestration of hypohalous acids, which may contribute to known therapeutic effects of PM in human diabetic nephropathy.
Keywords:Diabetes  Nephropathy  Hypochlorous acid  Hypobromous acid  Protein halogenation  Posttranslational modifications  Pyridoxamine  Free radicals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号