首页 | 本学科首页   官方微博 | 高级检索  
     


Location of N-unsubstituted glucosamine residues in heparan sulfate
Authors:Westling Camilla  Lindahl Ulf
Affiliation:Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P. O. Box 582, SE-75123 Uppsala, Sweden.
Abstract:Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号