首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Real-time investigation of nucleic acids phosphorylation process using molecular beacons
Authors:Tang Zhiwen  Wang Kemin  Tan Weihong  Ma Changbei  Li Jun  Liu Lingfeng  Guo Qiuping  Meng Xiangxian
Institution:Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Biological Technology, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082, People's Republic of China.
Abstract:Phosphorylation of nucleic acids is an indispensable process to repair strand interruption of nucleic acids. We have studied the process of phosphorylation using molecular beacon (MB) DNA probes in real-time and with high selectivity. The MB employed in this method is devised to sense the product of a ‘phosphorylation–ligation’ coupled enzyme reaction. Compared with the current assays, this novel method is convenient, fast, selective, highly sensitive and capable of real-time monitoring in a homogenous solution. The preference of T4 polynucleotide kinase (T4 PNK) has been investigated using this approach. The results revealed that a single-stranded oligonucleotide containing guanine at the 5′ termini is most preferred, while those utilizing cytosine in this location are least preferred. The preference of (T)9 was reduced greatly when phosphoryl was modified at the 5′ end, implying that T4 PNK could discern the phosphorylated/unphosphorylated oligonucleotides. The increase of oligonucleotide DNA length leads to an enhancement in preference. A fast and accurate method for assaying the kinase activity of T4 PNK has been developed with a wide linear detection range from 0.002 to 4.0 U/ml in 3 min. The effects of certain factors, such as NTP, ADP, (NH4)2SO4 and Na2HPO4, on phosphorylation have been investigated. This novel approach enables us to investigate the interactions between proteins and nucleic acids in a homogenous solution, such as those found in DNA repair or in drug development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号