首页 | 本学科首页   官方微博 | 高级检索  
     


Glycogen phosphorylase in glycogen-rich cells is involved in the energy supply for ion regulation in fish gill epithelia
Authors:Tseng Yung-Che  Huang Chang-Jen  Chang Joshua Chia-Hsi  Teng Wen-Yuan  Baba Otto  Fann Ming-Ji  Hwang Pung-Pung
Affiliation:Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529, R.O.C.
Abstract:The molecular and cellular mechanisms behind glycogen metabolism and the energy metabolite translocation between mammal neurons and astrocytes have been well studied. A similar mechanism is proposed for rapid mobilization of local energy stores to support energy-dependent transepithelial ion transport in gills of the Mozambique tilapia (Oreochromis mossambicus). A novel gill glycogen phosphorylase isoform (tGPGG), which catalyzes the initial degradation of glycogen, was identified in branchial epithelial cells of O. mossambicus. Double in situ hybridization and immunocytochemistry demonstrated that tGPGG mRNA and glycogen were colocalized in glycogen-rich cells (GRCs), which surround ionocytes (labeled with a Na(+)-K(+)-ATPase antiserum) in gill epithelia. Concanavalin-A (a marker for the apical membrane) labeling indicated that GRCs and mitochondria-rich cells share the same apical opening. Quantitative real-time PCR analyses showed that tGPGG mRNA expression levels specifically responded to environmental salinity changes. Indeed, the glycogen content, glycogen phosphorylase (GP) protein level and total activity, and the density of tGPGG-expressing cells (i.e., GRCs) in fish acclimated to seawater (SW) were significantly higher than those in freshwater controls. Short-term acclimation to SW caused an evident depletion in the glycogen content of GRCs. Taken altogether, tGPGG expression in GRCs is stimulated by hyperosmotic challenge, and this may catalyze initial glycogen degradation to provide the adjacent ionocytes with energy to carry out iono- and osmoregulatory functions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号