Cloning and identification of the Frigocyclinone biosynthetic gene cluster from Streptomyces griseus strain NTK 97 |
| |
Authors: | Jian Mo Haozhe Chen Bingbing Hou Haizhen Wu |
| |
Affiliation: | 1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China;2. Department of Applied Biology, East China University of Science and Technology, Shanghai, China |
| |
Abstract: | ABSTRACTFrigocyclinone is a novel antibiotic with antibacterial and anticancer activities. It is produced by both Antarctica-derived Streptomyces griseus NTK 97 and marine sponge-associated Streptomyces sp. M7_15. Here, we first report the biosynthetic gene cluster of frigocyclinone in the S. griseus NTK 97. The frigocyclinone gene cluster spans a DNA region of 33-kb which consists of 30 open reading frames (ORFs), encoding minimal type II polyketide synthase, aromatase and cyclase, redox tailoring enzymes, sugar biosynthesis-related enzymes, C-glycosyltransferase, a resistance protein, and three regulatory proteins. Based on the bioinformatic analysis, a biosynthetic pathway for frigocyclinone was proposed. Second, to verify the cloned gene cluster, CRISPR-Cpf1 mediated gene disruption was conducted. Mutant with the disruption of beta-ketoacyl synthase encoding gene frig20 fully loses the ability of producing frigocyclinone, while inactivating the glycosyltransferase gene frig1 leads to the production of key intermediate of anti-MRSA anthraquinone tetrangomycin. |
| |
Keywords: | Biosynthesis frigocyclinone type II polyketide synthases C-glycosyltransferase CRISPR-Cpf1 |
|
|