Definition of the bacterial N-glycosylation site consensus sequence |
| |
Authors: | Kowarik Michael Young N Martin Numao Shin Schulz Benjamin L Hug Isabelle Callewaert Nico Mills Dominic C Watson David C Hernandez Marcela Kelly John F Wacker Michael Aebi Markus |
| |
Affiliation: | Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH H?nggerberg, Switzerland. |
| |
Abstract: | The Campylobacter jejuni pgl locus encodes an N-linked protein glycosylation machinery that can be functionally transferred into Escherichia coli. In this system, we analyzed the elements in the C. jejuni N-glycoprotein AcrA required for accepting an N-glycan. We found that the eukaryotic primary consensus sequence for N-glycosylation is N terminally extended to D/E-Y-N-X-S/T (Y, X not equalP) for recognition by the bacterial oligosaccharyltransferase (OST) PglB. However, not all consensus sequences were N-glycosylated when they were either artificially introduced or when they were present in non-C. jejuni proteins. We were able to produce recombinant glycoproteins with engineered N-glycosylation sites and confirmed the requirement for a negatively charged side chain at position -2 in C. jejuni N-glycoproteins. N-glycosylation of AcrA by the eukaryotic OST in Saccharomyces cerevisiae occurred independent of the acidic residue at the -2 position. Thus, bacterial N-glycosylation site selection is more specific than the eukaryotic equivalent with respect to the polypeptide acceptor sequence. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|