Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles |
| |
Authors: | Persson Patrik Baybak Oxana Plieva Fatima Galaev Igor Y Mattiasson Bo Nilsson Bernt Axelsson Anders |
| |
Affiliation: | Department of Chemical Engineering, Lund Institute of Technology, P.O. Box 124, SE-221 00 Lund, Sweden. |
| |
Abstract: | A continuous supermacroporous monolithic chromatographic matrix has been characterized using a capillary model, experimental breakthrough curves, and pressure drop experiments. The model describes the convective flow and its dispersive mixing effects, mass transfer resistance, pore size distribution, and the adsorption behavior of the monolithic matrix. It is possible to determine an effective pore size distribution by fitting the capillary model to experimental breakthrough curves and pressure drop experiments. The model is able to describe the flow rate dependence of the experimental breakthrough curves. Mass transport resistance was due to: (i) dispersive mixing effects in the convective flow in the pores; and (ii) slow diffusion in the stagnant film covering the surface within each pore, under adsorption conditions. The monolithic matrix can be described by a very narrow pore size distribution, illustrating one of the advantages of the gel. A broader pore size distribution results in increased band broadening. This can be studied easily using the model developed in this investigation. |
| |
Keywords: | chromatography monolithic bed modeling, capillary model film mass transfer resistance adsorption |
本文献已被 PubMed 等数据库收录! |
|