Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus |
| |
Authors: | Senesi Sonia Ghelardi Emilia Celandroni Francesco Salvetti Sara Parisio Eva Galizzi Alessandro |
| |
Affiliation: | Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università di Pisa, 56127 Pisa, Italy. |
| |
Abstract: | Knowledge of the highly regulated processes governing the production of flagella in Bacillus subtilis is the result of several observations obtained from growing this microorganism in liquid cultures. No information is available regarding the regulation of flagellar formation in B. subtilis in response to contact with a solid surface. One of the best-characterized responses of flagellated eubacteria to surfaces is swarming motility, a coordinate cell differentiation process that allows collective movement of bacteria over solid substrates. This study describes the swarming ability of a B. subtilis hypermotile mutant harboring a mutation in the ifm locus that has long been known to affect the degree of flagellation and motility in liquid media. On solid media, the mutant produces elongated and hyperflagellated cells displaying a 10-fold increase in extracellular flagellin. In contrast to the mutant, the parental strain, as well as other laboratory strains carrying a wild-type ifm locus, fails to activate a swarm response. Furthermore, it stops to produce flagella when transferred from liquid to solid medium. Evidence is provided that the absence of flagella is due to the lack of flagellin gene expression. However, restoration of flagellin synthesis in cells overexpressing sigma(D) or carrying a deletion of flgM does not recover the ability to assemble flagella. Thus, the ifm gene plays a determinantal role in the ability of B. subtilis to contact with solid surfaces. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|