首页 | 本学科首页   官方微博 | 高级检索  
     


Cellular osmoregulation: beyond ion transport and cell volume
Authors:Kültz D
Affiliation:

aThe Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA

bMount Desert Island Biological Laboratory, Old Bar Harbor Road, PO Box 35, Salisbury Cove, ME 04672, USA

Abstract:All cells are characterized by the expression of osmoregulatory mechanisms, although the degree of this expression is highly variable in different cell types even within a single organism. Cellular osmoregulatory mechanisms constitute a conserved set of adaptations that offset antagonistic effects of altered extracellular osmolality/environmental salinity on cell integrity and function. Cellular osmoregulation includes the regulation of cell volume and ion transport but it does not stop there. We know that organic osmolyte concentration, protein structure, cell turnover, and other cellular parameters are osmoregulated as well. In this brief review two important aspects of cellular osmoregulation are emphasized: 1) maintenance of genomic integrity, and 2) the central role of protein phosphorylation. Novel insight into these two aspects of cellular osmoregulation is illustrated based on two cell models, mammalian kidney inner medullary cells and teleost gill epithelial cells. Both cell types are highly hypertonicity stress-resistant and, therefore, well suited for the investigation of osmoregulatory mechanisms. Damage to the genome is discussed as a newly discovered aspect of hypertonic threat to cells and recent insights on how mammalian kidney cells deal with such threat are presented. Furthermore, the importance of protein phosphorylation as a core mechanism of osmosensory signal transduction is emphasized. In this regard, the potential roles of the 14-3-3 family of phospho-protein adaptor molecules for cellular osmoregulation are highlighted primarily based on work with fish gill epithelial cells. These examples were chosen for the reader to appreciate the numerous and highly specific interactions between stressor-specific and non-specific pathways that form an extensive cellular signaling network giving rise to adaptive compensation of hypertonicity. Furthermore, the example of 14-3-3 proteins illustrates that a single protein may participate in several pathways that are non-specific with regard to the type of stress and, at the same time, in stress-specific pathways to promote cell integrity and function during hypertonicity.
Keywords:osmoregulation   signal transduction   protein phosphorylation   DNA damage   DNA repair
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号