首页 | 本学科首页   官方微博 | 高级检索  
     


Application of peptide-mediated ring current shifts to the study of neurophysin-peptide interactions: a partial model of the neurophysin-peptide complex
Authors:D Peyton  V Sardana  E Breslow
Abstract:Perdeuteriated peptides were synthesized that are capable of binding to the hormone binding site of neurophysin but that differ in the position of aromatic residues. The binding of these peptides to bovine neurophysin I and its des-1-8 derivative was studied by proton nuclear magnetic resonance spectroscopy in order to identify protein residues near the binding site through the observation of differential ring current effects on assignable protein resonances. Phenylalanine in position 3 of bound peptides was shown to induce significant ring current shifts in several resonances assignable to the 1-8 sequence, including those of Leu-3 and/or Leu-5, but was without effect on Tyr-49 ring protons. The magnitude of these shifts was dependent on the identity of peptide residue 1. By contrast, the sole demonstrable direct effect of an aromatic residue in position 1 was a downfield shift in Tyr-49 ring protons. Study of peptide binding to des-1-8-neurophysin demonstrated similar conformations of native and des-1-8 complexes except for the environment of Tyr-49, confirmed the peptide-induced ring current shift assignments in native neurophysin, and indicated an effect of binding on Thr-9. These observations are integrated with other results to provide a partial model of neurophysin-peptide complexes that places the ring of Tyr-49 at a distance 5-10 A from residue 1 of bound peptide and that places both the 1-8 sequence and the protein backbone region containing Tyr-49 proximal to each other and to peptide residue 3.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号