Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, India
Abstract:
The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin‐modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin‐modifying enzymes and recovery potential of enzyme modulators in scopolamine‐induced amnesia. Scopolamine administration drastically up‐regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB‐binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza‐2′deoxycytidine recovered scopolamine‐impaired hippocampal‐dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain‐derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza‐2′deoxycytidine and their co‐administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine‐induced up‐regulation of chromatin‐modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets.