首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient
Authors:Rochefort Sophie  Berthiaume Richard  Hébert Christian  Charest Martin  Bauce Eric
Affiliation:a Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi-Price, Université Laval, Québec, Canada G1V 0A6
b Natural Resources Canada, Canadian Forest Service, Laurentien Forestry Centre, 1055, rue du P.E.P.S., Québec, Québec, Canada G1V 4C7
Abstract:The hemlock looper, Lambdina fiscellaria, is an economically important insect pest of Canadian forests which overwinters as eggs. Although the hemlock looper causes extensive damages, no information on the mechanisms related to its cold tolerance is known. The objective of this study was to determine the effect of temperature and exposure duration on hemlock looper winter survival but also to identify seasonal supercooling capacity and cryoprotectant levels of three populations along a latitudinal gradient. As host plant may contribute to offspring overwintering success, cold tolerance of hemlock looper eggs from parents whose larvae were fed on three different tree species was also measured. Mean supercooling point (SCP) of hemlock looper eggs was lower than −30 °C from October through the following spring with values being as low as −47 °C in February. Trehalose was the most abundant sugar found in hemlock looper eggs with a peak concentration of 0.3 μg mg−1 DW−1. Glycerol, a polyol, was more often absent in eggs of the different populations and tree species tested in the study. When exposed to different temperature regimes for various periods of time, significant mortality of hemlock looper eggs occurred at higher temperatures than the mean SCP. Thus, hemlock looper could be considered as a chill tolerant species. No clear pattern of population and host plant effects on SCP and cryoprotectants was detected in this study. However, when exposed to different winter temperatures and exposure duration, hemlock looper from higher latitudes survived better (survival rates ranging between 0 and 89% at −20 °C) than those from lower latitudes (survival rates ranging between 0 and 56% at −20 °C). Our results may contribute to a better understanding of hemlock looper winter biology and thus facilitate predictions of outbreaks and range expansion.
Keywords:Cold tolerance   Winter survival   Diapause   Cryoprotectants   Supercooling   Trehalose
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号