首页 | 本学科首页   官方微博 | 高级检索  
     


The protein kinase SOS2 activates the Arabidopsis H(+)/Ca(2+) antiporter CAX1 to integrate calcium transport and salt tolerance
Authors:Cheng Ning-Hui  Pittman Jon K  Zhu Jian-Kang  Hirschi Kendal D
Affiliation:United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
Abstract:The regulation of ions within cells is an indispensable component of growth and adaptation. The plant SOS2 protein kinase and its associated Ca(2+) sensor, SOS3, have been demonstrated to modulate the plasma membrane H(+)/Na(+) antiporter SOS1; however, how these regulators modulate Ca(2+) levels within cells is poorly understood. Here we demonstrate that SOS2 regulates the vacuolar H(+)/Ca(2+) antiporter CAX1. Using a yeast growth assay, co-expression of SOS2 specifically activated CAX1, whereas SOS3 did not. CAX1-like chimeric transporters were activated by SOS2 if the chimeric proteins contained the N terminus of CAX1. Vacuolar membranes from CAX1-expressing cells were made to be H(+)/Ca(2+)-competent by the addition of SOS2 protein in a dose-dependent manner. Using a yeast two-hybrid assay, SOS2 interacted with the N terminus of CAX1. In each of these yeast assays, the activation of CAX1 by SOS2 was SOS3-independent. In planta, the high level of expression of a deregulated version of CAX1 caused salt sensitivity. These findings suggest multiple functions for SOS2 and provide a mechanistic link between Ca(2+) and Na(+) homeostasis in plants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号