首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets
Authors:Andris Jankevics  Maria Elena Merlo  Marcel de Vries  Roel J Vonk  Eriko Takano  Rainer Breitling
Institution:1.Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute,University of Groningen,Groningen,The Netherlands;2.Institute of Molecular, Cell and Systems Biology,College of Medical, Veterinary and Life Sciences, University of Glasgow,Glasgow,United Kingdom;3.Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute,University of Groningen,Groningen,The Netherlands;4.Centre for Medical Biomics,University Medical Centre Groningen,Groningen,Netherlands
Abstract:Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful and widely applied method for the study of biological systems, biomarker discovery and pharmacological interventions. LC-MS measurements are, however, significantly complicated by several technical challenges, including: (1) ionisation suppression/enhancement, disturbing the correct quantification of analytes, and (2) the detection of large amounts of separate derivative ions, increasing the complexity of the spectra, but not their information content. Here we introduce an experimental and analytical strategy that leads to robust metabolome profiles in the face of these challenges. Our method is based on rigorous filtering of the measured signals based on a series of sample dilutions. Such data sets have the additional characteristic that they allow a more robust assessment of detection signal quality for each metabolite. Using our method, almost 80% of the recorded signals can be discarded as uninformative, while important information is retained. As a consequence, we obtain a broader understanding of the information content of our analyses and a better assessment of the metabolites detected in the analyzed data sets. We illustrate the applicability of this method using standard mixtures, as well as cell extracts from bacterial samples. It is evident that this method can be applied in many types of LC-MS analyses and more specifically in untargeted metabolomics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号