首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pex14/17, a filamentous fungus‐specific peroxin,is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae
Authors:Ling Li  Jiaoyu Wang  Haili Chen  Rongyao Chai  Zhen Zhang  Xueqin Mao  Haiping Qiu  Hua Jiang  Yanli Wang  Guochang Sun
Institution:1. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China;2. School of Agricultural and Food Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
Abstract:Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfil a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins, named peroxins, which are encoded by PEX genes. Pex14/17 is a putative recently identified peroxin, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity have not yet been documented. Here, we demonstrate the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 with regard to its protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. MoPEX19 deletion leads to the cytoplasmic distribution of Mopex14/17, indicating that the peroxisomal import of Pex14/17 is dependent on Pex19. The knockout mutants of MoPEX14/17 show reduced fatty acid utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, Δmopex14/17 mutants show delayed conidial generation and appressorial formation, and a reduction in appressorial turgor accumulation and penetration ability in host plants. These defects result in a significant reduction in the virulence of the mutant. These data indicate that MoPEX14/17 plays a crucial role in peroxisome biogenesis and contributes to fungal development and pathogenicity.
Keywords:fungal pathogenicity  Magnaporthe oryzae  MoPEX14/17  peroxisome
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号