首页 | 本学科首页   官方微博 | 高级检索  
     


The genomic stability of induced pluripotent stem cells
Authors:Zhao Chen  Tongbiao Zhao  Yang Xu
Affiliation:Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
Abstract:With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of human patients with defined factors, hold promise for regenerative medicine because they can provide a renewable source of autologous cells for cell therapy without the concern for immune rejection. In addition, iPSCs provide a unique opportunity to model human diseases with complex genetic traits, and a panel of human diseases have been successfully modeled in vitro by patient-specific iPSCs. Despite these progresses, recent studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to the immunogenicity of some cells differentiated from iPSCs. The oncogenic potential of iPSCs is further underscored by the findings that the critical tumor suppressor p53, known as the guardian of the genome, suppresses induced pluripotency. Therefore, the clinic application of iPSCs will require the optimization of the reprogramming technology to minimize the genetic and epigenetic abnormalities associated with induced pluripotency.
Keywords:induced pluripotent stem cells  reprogramming  genetic and epigenetic abnormalities  
点击此处可从《蛋白质与细胞》浏览原始摘要信息
点击此处可从《蛋白质与细胞》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号