首页 | 本学科首页   官方微博 | 高级检索  
     


Cellular Automata Modeling of Pulmonary Inflammation
Authors:Angela Reynolds  Kittisak Koombua  Ramana M. Pidaparti  Kevin R. Ward
Abstract:Better understanding of the acute/chronic inflammation in airways is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems. Local lung inflammation is triggered by many mechanisms within the lung, including pathogens. In this study, a cellular automata based model (CA) for pulmonary inflammation that incorporates biophysical processes during inflammatory responses was developed. The developed CA results in three possible outcomes related to homeostasis (healing), persistent infection, and resolved infection with high inflammation (inflamed state). The results from the model are validated qualitatively against other existing computational models. A sensitivity analysis was conducted on the model parameters and the outcomes were assessed. Overall, the model results showed possible outcomes that have been seen in clinical practice and animal models. The present model can be extended to include inflammation resulting from damage tissue and eventually to model inflammation resulting from acute lung injury and multiple organ dysfunction syndromes in critical illness and injury.
Keywords:Inflammation   Cellular Automata Modeling   Simulations   Pathogens   Acute Lung Injury
点击此处可从《Molecular & cellular biomechanics : MCB》浏览原始摘要信息
点击此处可从《Molecular & cellular biomechanics : MCB》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号