首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ceramide interaction with the respiratory chain of heart mitochondria
Authors:Di Paola M  Cocco T  Lorusso M
Institution:Department of Medical Biochemistry and Biology and Centre for the Study of Mitochondria and Energy Metabolism (CNR), University of Bari, 70124 Bari, Italy.
Abstract:A study is presented on the interaction of ceramide with the respiratory chain of rat heart mitochondria, and a comparison is made between the effects elicited by short- and long-chain ceramides. N-Acetylsphingosine (C(2)-ceramide) and N-palmitoylsphingosine (C(16)-ceramide) inhibited to the same extent the pyruvate+malate-dependent oxygen consumption. Succinate-supported respiration was also inhibited by ceramides, but this activity was substantially restored upon the addition of cytochrome c, which, on the contrary, was ineffective toward the ceramide-inhibited NADH-linked substrate oxidation. Direct measurements showed that short- and long-chain ceramides caused a large release of cytochrome c from mitochondria. The ceramide-dependent inhibition of pyruvate+malate and succinate oxidation caused reactive oxygen species to be produced at the level of either complex I or complex III. The activity of the cytochrome c oxidase, measured as ascorbate/TMPD oxidase activity, was significantly stimulated and inhibited by C(2)- and C(16)-ceramide, respectively. Similar effects were observed on the activity of the individual respiratory complexes isolated from bovine heart. Short- and long-chain ceramides had definitely different effects on the mitochondrial membrane potential. C(2)-ceramide caused an almost complete collapse of the respiration-dependent membrane potential, whereas C(16)-ceramide had a negligible effect. Similar results were obtained when the potential was generated in liposome-reconstituted complex III respiring at the steady-state. Furthermore, C(2)-ceramide caused a drop of the membrane potential generated by ATP hydrolysis instead of respiration, whereas C(16)-ceramide did not. Finally, only short-chain ceramides inhibited markedly the reactive oxygen species generation associated with membrane potential-dependent reverse electron flow from succinate to complex I. The emerging indication is that the short-chain ceramide-dependent collapse of membrane potential is a consequence of their ability to perturb the membrane structure, leading to an unspecific increase of its permeability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号