首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A molecular mechanism for stabilization of learning-induced synaptic modifications
Authors:Quinlan Elizabeth M  Lebel David  Brosh Inbar  Barkai Edi
Institution:Department of Biology, Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, 20742, USA. eq5@umail.umd.edu
Abstract:Olfaction is a principal sensory modality in rodents, and rats quickly learn to discriminate between odors and to associate odor with reward. Here we show that such olfactory discrimination (OD) learning consists of two phases with distinct cellular mechanisms: an initial NMDAR-sensitive phase in which the animals acquire a successful behavioral strategy (rule learning), followed by an NMDAR-insensitive phase in which the animals learn to distinguish between individual odors (pair learning). Rule learning regulates the composition of synaptic NMDARs in the piriform cortex, resulting in receptors with a higher complement of the NR2a subunit protein relative to NR2b. Rule learning also reduces long-term potentiation (LTP) induced by high-frequency stimulation of the intracortical axons in slices of piriform cortex. As NR2a-containing NMDARs mediate shorter excitatory postsynaptic currents than those containing NR2b, we suggest that learning-induced regulation of NMDAR composition constrains subsequent synaptic plasticity, thereby maintaining the memory encoded by experience.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号