首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proteolytic processing by matrix metalloproteinases and phosphorylation by protein kinase CK2 of fetuin-A, the major globulin of fetal calf serum
Authors:Kübler Dieter  Gosenca Darko  Wind Mathias  Heid Hans  Friedberg Ilan  Jahnen-Dechent Willi  Lehmann Wolf D
Institution:Mechanisms of Biomolecular Interactions (A060), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. d.kuebler@dkfz.de
Abstract:Bovine fetuin-A is a member of a glycoprotein family with a wide spectrum of functions. Until now the bovine protein has been thought to be a single-chain protein. Recently we have shown that native bovine plasma fetuin-A partially exists as a disulfide-bridged two-chain protein with a heavy N-terminal and a lighter C-terminal chain similar to the structure of human fetuin-A homologue (alpha2HS glycoprotein), and also is partially phosphorylated at residues Ser120, Ser302, Ser305 and Ser306 (Wind et al., Anal. Biochem. 317 (2003) 26-33). Both fetuin-A modifications, the phosphorylation at the four sites as well as the proteolysis which causes longer or shorter light chains (termed lc-1 and lc-2, respectively), are probably brought about by targeted enzymatic activities which still need to be defined. In this study we show that authentic bovine fetuin-A disulfide-bridged two-chain forms, which include the original C-terminus, were liberated from the single-chain precursor by metalloproteinases MMP-3 (stromelysin-1) and MMP-7 (matrilysin), but not by elastase, cathepsin E and cathepsin G. Peptide sequencing suggested cleavage sites chiefly at the Pro277-Ser278 or Arg294-His295 peptide bonds. Fetuin-A radioactive phosphorylation in vitro by protein kinase CK2 caused (32)P incorporation into the fetuin-A light chain lc-1 but not lc-2 or the fetuin-A heavy chain, as revealed by MMP assisted proteolysis. Analysis by nanoESI-MS pinpointed phosphorylation at the native phospho-residues Ser302, Ser305 and Ser306 by increased relative abundance following in vitro phosphorylation. Moreover, CK2 phosphorylation of synthetic C-terminal fetuin-A peptides, used as effective controls to the native protein, strongly implies that CK2 is involved in the in vivo phosphorylation of fetuin-A. The phosphorylation of N-terminally truncated peptide homologs seemed highly dependent on the sequence context N-terminal of the phosphorylation sites, thus providing a likely explanation for the non-phosphorylation of the light chain lc-2 in native fetuin-A.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号