首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple pulse interactions and averaging in systems of coupled neural oscillators
Authors:G. B. Ermentrout  N. Kopell
Affiliation:(1) Department of Mathematics, University of Pittsburgh, 15260 Pittsburgh, PA, USA;(2) Department of Mathematics, Boston University, Boston, USA
Abstract:Oscillators coupled strongly are capable of complicated behavior which may be pathological for biological control systems. Nevertheless, strong coupling may be needed to prevent asynchrony. We discuss how some neural networks may be designed to achieve only simple locking behavior when the coupling is strong. The design is based on the fact that the method of averaging produces equations that are capable only of locking or drift, not pathological complexity. Furthermore, it is shown that oscillators that interact by means of multiple pulses per cycle, dispersed around the cycle, behave like averaged equations, even if the number of pulses is small. We discuss the biological intuition behind this scheme, and show numerically that it works when the oscillators are taken to be composites, each unit of which is governed by a well-known model of a neural oscillator. Finally, we describe numerical methods for computing from equations for coupled limit cycle oscillators the averaged coupling functions of our theory.Research partially supported by the National Science Foundation under grants DMS 8796235 and DMS 8701405 and the Air Force Office of Scientific Research under University Research Contract F 49620-C-0131 to Northeastern University
Keywords:Oscillations  Neurons  Averaging  Neural circuits
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号