首页 | 本学科首页   官方微博 | 高级检索  
     


Microbial growth rates and local external mass transfer coefficients in a porous bed biofilm system measured by 19F magnetic resonance imaging of structure,oxygen concentration,and flow velocity
Authors:Jeffrey W. Simkins  Philip S. Stewart  Sarah L. Codd  Joseph D. Seymour
Affiliation:1. Center for Biofilm Engineering, Montana State University, Bozeman, Montana

Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana;2. Center for Biofilm Engineering, Montana State University, Bozeman, Montana

Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana;3. Center for Biofilm Engineering, Montana State University, Bozeman, Montana

Abstract:19F nuclear magnetic resonance (NMR) oximetry and 1H NMR velocimetry were used to noninvasively map oxygen concentrations and hydrodynamics in space and time in a model packed bed biofilm system in the presence and absence of flow. The development of a local oxygen sink associated with a single gel bead inoculated with respiring Escherichia coli was analyzed with a phenomenological model to determine the specific growth rate of the bacteria in situ, returning a value (0.66 hr−1) that was close to that measured independently in planktonic culture (0.62 hr−1). The decay of oxygen concentration in and around the microbiologically active bead was delayed and slower in experiments conducted under continuous flow in comparison to no-flow experiments. Concentration boundary layer thicknesses were determined and Sherwood numbers calculated to quantify external mass transfer resistance. Boundary layers were thicker in no-flow experiments compared to experiments with flow. Whereas the oxygen concentration profile across a reactive biofilm particle was symmetric in no-flow experiments, it was asymmetric with respect to flow direction in flow experiments with Sherwood numbers on the leading edge (Sh = 7) being larger than the trailing edge (Sh = 3.5). The magnitude of the experimental Sh was comparable to values predicted by a variety of correlations. These spatially resolved measurements of oxygen distribution in a geometrically complex model reveal in innovative detail the local coupling between microbial growth, oxygen consumption, and external mass transfer.
Keywords:biofilms  boundary layer  MRI  oximetry  Sherwood number
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号