首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo interpretation of model predicted inhibition in acrylate pathway engineered Lactococcus lactis
Authors:Sowmiya Balasubramanian  Priyadharshini Chandrasekran  Anitha J R Yesudhas  Padmapriya Ganapathyraman  Mark A Eiteman  Ramalingam Subramanian
Institution:1. Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India;2. School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia
Abstract:To maximize the productivity of engineered metabolic pathway, in silico model is an established means to provide features of enzyme reaction dynamics. In our previous study, Escherichia coli engineered with acrylate pathway yielded low propionic acid titer. To understand the bottleneck behind this low productivity, a kinetic model was developed that incorporates the enzymatic reactions of the acrylate pathway. The resulting model was capable of simulating the fluxes reported under in vitro studies with good agreement, suggesting repression of propionyl-CoA transferase (Pct) by carboxylate metabolites as the main limiting factor for propionate production. Furthermore, the predicted flux control coefficients of the pathway enzymes under steady state conditions revealed that the control of flux is shared between Pct and lactoyl-CoA dehydratase. Increase in lactate concentration showed gradual decrease in flux control coefficients of Pct that in turn confirmed the control exerted by the carboxylate substrate. To interpret these in silico predictions under in vivo system, an organized study was conducted with a lactic acid bacteria strain engineered with acrylate pathway. Analysis reported a decreased product formation rate on attainment of inhibitory titer by suspected metabolites and supported the model.
Keywords:acrylate pathway  kinetic model  Lactococcus lactis  metabolic engineering  propionic acid  propionyl-CoA transferase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号