首页 | 本学科首页   官方微博 | 高级检索  
     


A two-phase Bayesian methodology for the analysis of binary phenotypes in genome-wide association studies
Authors:Chase Joyner  Christopher McMahan  James Baurley  Bens Pardamean
Affiliation:1. School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA;2. BioRealm LLC, Walnut, CA, USA

Bioinformatics and Data Science Research Center, Bina Nusantara University, Kebon Jeruk, Indonesia;3. Bioinformatics and Data Science Research Center, Bina Nusantara University, Kebon Jeruk, Indonesia

Abstract:Recent advances in sequencing and genotyping technologies are contributing to a data revolution in genome-wide association studies that is characterized by the challenging large p small n problem in statistics. That is, given these advances, many such studies now consider evaluating an extremely large number of genetic markers (p) genotyped on a small number of subjects (n). Given the dimension of the data, a joint analysis of the markers is often fraught with many challenges, while a marginal analysis is not sufficient. To overcome these obstacles, herein, we propose a Bayesian two-phase methodology that can be used to jointly relate genetic markers to binary traits while controlling for confounding. The first phase of our approach makes use of a marginal scan to identify a reduced set of candidate markers that are then evaluated jointly via a hierarchical model in the second phase. Final marker selection is accomplished through identifying a sparse estimator via a novel and computationally efficient maximum a posteriori estimation technique. We evaluate the performance of the proposed approach through extensive numerical studies, and consider a genome-wide application involving colorectal cancer.
Keywords:Bayes factors  EM algorithm  GWAS  MAP estimator  shrinkage prior
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号