首页 | 本学科首页   官方微博 | 高级检索  
     


Skew-normal random-effects model for meta-analysis of diagnostic test accuracy (DTA) studies
Authors:Zelalem F. Negeri  Joseph Beyene
Affiliation:Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
Abstract:Hierarchical models are recommended for meta-analyzing diagnostic test accuracy (DTA) studies. The bivariate random-effects model is currently widely used to synthesize a pair of test sensitivity and specificity using logit transformation across studies. This model assumes a bivariate normal distribution for the random-effects. However, this assumption is restrictive and can be violated. When the assumption fails, inferences could be misleading. In this paper, we extended the current bivariate random-effects model by assuming a flexible bivariate skew-normal distribution for the random-effects in order to robustly model logit sensitivities and logit specificities. The marginal distribution of the proposed model is analytically derived so that parameter estimation can be performed using standard likelihood methods. The method of weighted-average is adopted to estimate the overall logit-transformed sensitivity and specificity. An extensive simulation study is carried out to investigate the performance of the proposed model compared to other standard models. Overall, the proposed model performs better in terms of confidence interval width of the average logit-transformed sensitivity and specificity compared to the standard bivariate linear mixed model and bivariate generalized linear mixed model. Simulations have also shown that the proposed model performed better than the well-established bivariate linear mixed model in terms of bias and comparable with regards to the root mean squared error (RMSE) of the between-study (co)variances. The proposed method is also illustrated using a published meta-analysis data.
Keywords:diagnostic test accuracy  meta-analysis  sensitivity  skew-normal random-effects  specificity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号