首页 | 本学科首页   官方微博 | 高级检索  
     


Mass spectrometry studies of the fragmentation patterns and mechanisms of protonated peptoids
Authors:Jianhua Ren  Yuan Tian  Ekram Hossain  Joshua S. Ho  Yadwinder S. Mann  Yuntao Zhang  Michael D. Browne  Michael D. Connolly  Ronald N. Zuckermann
Affiliation:1. Department of Chemistry, University of the Pacific, Stockton, CA, U.S.A., USA;2. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A., USA
Abstract:Peptoids belong to a class of sequence-controlled polymers comprising of N-alkylglycine. This study focuses on using tandem mass spectrometry techniques to characterize the fragmentation patterns of a set of singly and doubly protonated peptoids consisting of one basic residue placed at different positions. The singly protonated peptoids fragment by producing predominately high-abundant C-terminal ions called Y-ions and low-abundant N-terminal ions called B-ions. Computational studies suggest that the proton affinity (PA) of the C-terminal fragments is generally higher than that of the N-terminal fragments, and the PA of the former increases as the fragments are elongated. The B-ions are likely formed upon dissociating the proton-activated amide bonds via an oxazolone structure, and the Y-ions are produced subsequently by abstracting a proton from the newly formed B-ions, which is energetically favored. The doubly protonated peptoids prefer to fragment closest to either the N- or the C-terminus and produce corresponding B/Y-ion pairs. The basic residue seems to dictate the preferred fragmentation site, which may be the result of minimizing the repulsion between the two charges. Water and terminal neutral losses are a facile process accompanying the peptoid fragmentation in both charge states. The patterns appear to be highly influenced by the location of the basic residue.
Keywords:CID  fragment ion  N-alkylglycine  sequence-controlled polymer  water loss
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号