首页 | 本学科首页   官方微博 | 高级检索  
     


Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination
Authors:Abdelhamid Rehab F  Obara Yuji  Kohzuma Takamitsu
Affiliation:

aInstitute of Applied Beam Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan

Abstract:Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH > 11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu–S(Cys) stretching frequency was shifted to higher frequency region at pH 11. The higher frequency shift of Cu–S(Cys) bond is implied the stronger Cu–S(Cys) bond at alkaline transition pH 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH > 11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH > 11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine –SCH3 part and coordinated histidine imidazole moiety. The introduction of π–π interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.
Keywords:Pseudoazurin   Blue copper protein   Second sphere coordination   Alkaline transition   Unfolding
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号