首页 | 本学科首页   官方微博 | 高级检索  
     


Hepatic microsomal metabolism of androst-4-ene-3,17-dione: Relative importance of ring hydroxylation and aromatization in control and induced rat liver
Affiliation:Liver Research Unit, Department of Medicine, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
Abstract:The purpose of these studies was to determine whether oestrogen production is a quantitatively important pathway in the hepatic microsomal metabolism of androst-4-ene-3,17-dione. The effects of the enzyme inducing agents phenobarbitone and β-naphthoflavone on microsomal cytochrome P-450-mediated androst-4-ene-3,17-dione hydroxylation and aromatization was investigated in the rat in vitro. In microsomal fractions from untreated rats the ratio of hydroxylated products to aromatized (oestrogenic) metabolites was 33:1. Phenobarbitone pretreatment of rats increased total hydroxylation by about 20% but did not change the ratio of hydroxylated to aromatized products (27:1). In contrast, β-naphthoflavone induction decreased total hydroxylation to about 35% of control but did not affect total aromatization. Thus the ratio of hydroxylation to aromatization was significantly lower than in control microsomes (17:1).The principal aromatized products were oestriol and 2-hydroxyoestradiol-17β, with oestradiol-17β and its 4-hydroxy metabolite as minor products; no oestrone was observed. In further studies of the microsomal metabolism of oestrone, the major product was oestradiol-17β whereas hydroxylated metabolites were only minor products. Oestradiol-17β, in contrast, was hydroxylated to a considerable extent. These findings suggest that oestrone is a better substrate for the microsomal 17β-oxidoreductase than it is for cytochrome P-450. It therefore appears likely that any oestrone formed from the aromatization of androst-4-ene-3,17-dione would be readily converted to oestradiol-17β which, in turn, is subject to cytochrome P-450-mediated hydroxylation. Although the liver is a site of C19-steroid aromatization, it appears unlikely that this organ could contribute significantly to serum oestrogen levels since microsomal hydroxylases are readily able to convert aromatized products to biologically inactive metabolites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号