首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of manganese deficiency and toxicity on isoprenoid syntheses
Authors:Wilkinson R E  Ohki K
Institution:Department of Agronomy, Georgia Station, Griffin, Georgia 30223-1797.
Abstract:Twenty-eight day old wheat (Triticum aestivum L. cv Stacy) response to varying Mn concentration (10.1-10,000 micromolar) in nutrient solution was measured. Manganese concentrations in the most recently matured leaves (blade 1) were 0.21 to 19.03 mmol Mn per kilogram dry weight, respectively. Fresh and dry weights increased to a maximum at the 5 micromolar Mn nutritional level (0.37 millimole Mn per kilogram dry weight) and were decreased at Mn above and below this concentration. Blade 1 chloroplast pigment concentrations increased up to the 20 micromolar Mn nutritional level (1.98 millimole Mn per kilogram dry weight) and decreased at higher Mn concentrations. Thylakoid Mn content was above 1 mole Mn/100 mole chloroplast at Mn nutrition levels which resulted in greatly decreased plant growth. Total phytoene biosynthesis was decreased by Mn deficiency and toxicity. In vitro ent- kaurene synthesis was greatly influenced by Mn concentration with a maximal biosynthesis at 1 micromolar Mn and decreases at Mn levels above and below this concentration. In vivo blade 1 gibberellic acid equivalent concentrations were maximal at 20 parts per million Mn nutrition solution levels (1.98 millimole Mn per kilogram dry weight) and decreased at Mn tissue concentrations above and below this value; additionally, gibberellic acid concentrations were reciprocal to extracted C20 alcohol concentrations. Mn influence on gibberellin and chloroplast pigment biosyntheses exactly matched the measured changes in growth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号