首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of static magnetic fields on the growth,photosynthesis and ultrastructure of Chlorella kessleri microalgae
Authors:Darcy P Small  Norman PA Hüner  Wankei Wan
Institution:1. Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada;2. Department of Biology, University of Western Ontario, London, ON, Canada;3. Biotron Experimental Climate Change Research Center, University of Western Ontario, London, ON, Canada;4. University of Western Ontario, Graduate Program in Biomedical Engineering, London, ON, Canada
Abstract:Microalgal biotechnology could generate substantial amounts of biofuels with minimal environmental impact if the economics can be improved by increasing the rate of biomass production. Chlorella kessleri was grown in a small‐scale raceway pond and in flask cultures with the entire volume, 1% (v/v) at any instant, periodically exposed to static magnetic fields to demonstrate increased biomass production and investigate physiological changes, respectively. The growth rate in flasks was maximal at a field strength of 10 mT, increasing from 0.39 ± 0.06 per day for the control to 0.88 ± 0.06 per day. In the raceway pond the 10 mT field increased the growth rate from 0.24 ± 0.03 to 0.45 ± 0.05 per day, final biomass from 0.88 ± 0.11 to 1.56 ± 0.18 g/L per day, and maximum biomass production from 0.11 ± 0.02 to 0.38 ± 0.04 g/L per day. Increased pigment, protein, Ca, and Zn content made the biomass produced with magnetic stimulation nutritionally superior. An increase in oxidative stress was measured indirectly as a decrease in antioxidant capacity from 26 ± 2 to 17 ± 1 µmol antioxidant/g biomass. Net photosynthetic capacity (NPC) and respiratory rate were increased by factors of 2.1 and 3.1, respectively. Loss of NPC enhancement after the removal of magnetic field fit a first‐order model well (R2 = 0.99) with a half‐life of 3.3 days. Transmission electron microscopy showed enlarged chloroplasts and decreased thylakoid order with 10 mT treatment. By increasing daily biomass production about fourfold, 10 mT magnetic field exposure could make algal oil cost competitive with other biodiesel feedstocks. Bioelectromagnetics 33:298–308, 2012. © 2011 Wiley Periodicals, Inc.
Keywords:oxidative stress  photosynthesis  microalgae  biofuel  nutrition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号