首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Design of novel PhMTNA inhibitors,targeting neurological disorder through homology modeling,molecular docking,and dynamics approaches
Authors:Prajisha Jayaprakash  Jayashree Biswal  Sureka Kanagarajan  Dhamodharan Prabhu  Prerana Gogoi  Shankar Prasad Kanaujia
Institution:1. Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India;2. Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
Abstract:Vanishing white matter (VWM) is a hereditary human disease, mostly prevalent in childhood caused by the defects in the eukaryotic initiation factor beta subunits. It is the first disease involved in the translation initiation factor, eIF2B. There is no specific treatment for VWM which mainly affect the brain and ovaries. The gray matter remains normal in all characteristics while the white matter changes texture, coming to the pathophysiology, many initiation factors are involved in the initiation of translation of mRNAs into polypeptides. In this study, the three-dimensional structure of PhMTNA protein was modeled and the stability ascertained through Molecular dynamic simulation (MDS) for 100?ns. The active site residues are conserved with the reported BsMTNA structure which is also confirmed through sitemap prediction. Through virtual screening and induced fit docking, top five leads against PhMTNA protein was identified based on their binding mode and affinity. ADME properties and DFT (Density Functional Theory) studies of these compounds were studied. In addition to that, computational mutagenesis studies were performed to identify the hotspot residues involved in the protein-ligand interactions. Overall analysis showed that the compound NCI_941 has a highest binding energy of ?46.256?kcal mol?1 in the Arg57Ala mutant. Thus, the results suggest that NCI_941 would act as a potent inhibitor against PhMTNA protein.
Keywords:Bs-Bacillus subtilis  density functional theory  homology modeling  molecular dynamics  MTNA  Ph-Pyrococcus horikoshii OT3  virtual screening
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号