首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interactions of helical polypepetide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system.
Authors:D Chapman  B A Cornell  A W Ellasz  A Perry
Institution:Chemistry Department, Chelsea College University of London, London SW3 6LX, England
Abstract:The polypeptide gramicidin A in a dimeric form is considered to form a helical structure which spans the hydrocarbon region of lipid bilayers. In the present investigation it is used as a model for the interactions of the polypeptide segments of transmembrane proteins within the hydrocarbon region of the lipid bilayers of biomembrane structures. A variety of physical techniques (X-ray diffraction, differential scanning calorimetry, optical and electron microscopy, Raman and electron spin resonance spectroscopy) are applied to a study of the interactions of this polypeptide within the phospholipid bilayers of dimyristoyl and dipalmitoyl lecithins in water, at temperatures both above and below the main endothermic phase transition of the pure lipids.Above the transition temperature of the lipid, the Raman studies show that the polypeptide perturbs the fluid lipid environment and causes a marked decrease in the number of gauche isomers of the lipid hydrocarbon chains, even at quite low relative molar concentrations of the polypeptide to lipid (1:150). At concentrations of phospholipid to polypeptide of less than 5:1, the electron spin resonance studies show the existence of two lipid regions within the bilayer. One region corresponds to the relatively fluid lipid region normally observed at these temperatures and the other to a relatively rigid lipid region. The latter is considered to arise from clusters of the polypeptide in which some of the lipid is entrapped.Below the lipid phase transition temperature, the pretransition endotherm observed with pure lipid-water systems is removed by small molar concentrations of the polypeptide (1:50) and the rippled appearance observed in freeze-fracture electron micrographs with pure dimyristoyl lecithin-water dispersions is replaced by a smooth appearance.The main lipid phase transition becomes broadened by the presence of increasing amounts of the polypeptide within the lipid bilayer as indicated by calorimetry, and electron spin resonance spectroscopy. The enthalpy of the lipid transition decreases linearly with increasing amounts of the polypeptide until, with dipalmitoyl lecithin, a concentration of approximately 20 lipids per polypeptide is reached. This is considered to correspond to the onset of an aggregation process which produces localised polypeptide-lipid clusters within the plane of the membrane.At concentrations of polypeptide less than five lipids per polypeptide, freezefracture electron microscopy shows the presence of liposomes with smooth fracture faces. At higher polypeptide concentrations, sheet-like structures are observed with smooth fracture faces.When a mixed lipid-water system (dilauroyl and dipalmitoyl lecithin) containing low concentrations of the polypeptide is slowly cooled, the calorimetric evidence shows that the polypeptide moves preferentially into the lower melting region of the bilayer, whereas at higher polypcptide eoncentrations a mixing of the two lipids takes place.The various results are discussed to provide insight pertinent to the organisation, interactions, aggregation properties, boundary layer and packing arrangements of helical polypeptides and proteins in reconstituted systems and natural biomembranes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号