首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bacterial polysaccharides suppress induced innate immunity by calcium chelation
Authors:Aslam Shazia N  Newman Mari-Anne  Erbs Gitte  Morrissey Kate L  Chinchilla Delphine  Boller Thomas  Jensen Tina Tandrup  De Castro Cristina  Ierano Teresa  Molinaro Antonio  Jackson Robert W  Knight Marc R  Cooper Richard M
Institution:Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK.
Abstract:Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses 1], 2] and 3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear 4], 5], 6] and 7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature 4] and consequent ability to chelate divalent calcium ions 8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply 4], 5] and 9]) is a prerequisite for activation of myriad defenses by MAMPs 10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.
Keywords:SIGNALING  MICROBIO
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号