首页 | 本学科首页   官方微博 | 高级检索  
     


Large-scale manipulation of plant litter and fertilizer in a managed successional temperate grassland
Authors:L. Brian Patrick  Lauchlan H. Fraser  Mark W. Kershner
Affiliation:(1) Department of Biological Sciences, Kent State University, Kent, OH 44242, USA;(2) Department of Natural Resource Sciences, Thompson Rivers University, 900 McGill Road, PO Box 3010, Kamloops, BC, Canada, V2C 5N3
Abstract:Plant litter may play an important role in herbaceous plant communities by limiting primary production and influencing plant species richness. However, it is not known how the effect of litter interacts with fertilization. We tested for the role of litter and fertilization in a large-scale experiment to investigate effects on diversity and biomass of plant species, growth forms, native vs. non-native groups, and abiotic ecosystem components (e.g., soil moisture, PAR). We manipulated plant litter (removed vs. left in situ) and nutrient availability (NPK-fertilized vs. unfertilized) for 4 years in 314-m2 plots, replicated six times, in an old-field grassland. While many of our species-level results supported previously published studies and theory, our plant group results generally did not. Specifically, grass species richness and forb biomass was not affected by either fertilization or plant litter. Moreover, plant litter removal significantly increased non-native plant species richness. Relative to native plant species, all of our experimental manipulations significantly increased both the biomass and the species richness of non-native plant species. Thus, this grassland system was sensitive to management treatments through the facilitation of non-native plant species. We coupled biotic and abiotic components within a nonmetric multidimensional scaling (NMS) analysis to investigate treatment effects, which revealed that specific treatments altered ecosystem development. These results suggest that fertilization and plant litter may have larger impacts on plant communities and on ecosystem properties than previously understood, underscoring the need for larger-scale and longer-term experiments.
Keywords:Disturbance  Nitrogen  NMS ordination  Non-native species  Plant functional group  Species diversity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号