首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA Sequencing and Homologous Expression of a Small Peptide Conferring Immunity to Gassericin A,a Circular Bacteriocin Produced by Lactobacillus gasseri LA39
Authors:Yasushi Kawai  Joni Kusnadi  Rober Kemperman  Jan Kok  Yoshiyuki Ito  Mikiko Endo  Kensuke Arakawa  Hideaki Uchida  Junko Nishimura  Haruki Kitazawa  Tadao Saito
Abstract:Gassericin A, produced by Lactobacillus gasseri LA39, is a hydrophobic circular bacteriocin. The DNA region surrounding the gassericin A structural gene, gaaA, was sequenced, and seven open reading frames (ORFs) of 3.5 kbp (gaaBCADITE) were found with possible functions in gassericin A production, secretion, and immunity. The deduced products of the five consecutive ORFs gaaADITE have homology to those of genes involved in butyrivibriocin AR10 production, although the genetic arrangements are different in the two circular bacteriocin genes. GaaI is a small, positively charged hydrophobic peptide of 53 amino acids containing a putative transmembrane segment. Heterologous expression and homologous expression of GaaI in Lactococcus lactis subsp. cremoris MG1363 and L. gasseri JCM1131T, respectively, were studied. GaaI-expressing strains exhibited at least sevenfold-higher resistance to gassericin A than corresponding control strains, indicating that gaaI encodes an immunity peptide for gassericin A. Comparison of GaaI to peptides with similar characteristics found in the circular bacteriocin gene loci is discussed.Bacteriocins are antimicrobial peptides that act primarily against related bacterial species. The classification of bacteriocins remains controversial. Here, we use the classification of Maqueda et al. (30): class I (lantibiotics); class II (nonlantibiotics) with subclasses IIa (antilisteral pediocin-like bacteriocins), IIb (two-peptide bacteriocins), and IIc (leaderless bacteriocins); class III (large heat-labile bacteriocins); and class IV (circular bacteriocins linked at the N- and C-terminal amino acids).Nine class IV circular bacteriocins have been reported to date. They can be further divided into two major groups by using their primary structures, biochemical characteristics, and genetic arrangements. One group is the family of enterocin AS-48 (32), the first circular bacteriocin described (in 1994), which includes circularin A (25) and uberolysin (40). The other group is the family of gassericin A (19, 21), the second bacteriocin found (in 1998), which includes acidocin B (28), reutericin 6 (with a primary structure 100% identical to that of gassericin A) (22, 23), butyrivibriocin AR10 (17), and carnocyclin A, from Carnobacterium maltaromaticum UAL307 (33). The lantibiotic-like subtilosin A produced by Bacillus subtilis subsp. subtilis strain 168 (24) is an orphan member of the class IV bacteriocins. The gassericin A family of bacteriocins have been isolated from various bacterial species in several countries, suggesting the bacteriocin genes may be associated with transferable genetic elements.The bacteriocins of lactic acid bacteria (LAB) and bacteriocin-producing LAB strains isolated from foods are promising food preservative candidates, and strains of human origin are expected to be probiotics that could help to prevent the growth of harmful bacteria in food and the human intestine. Lactobacillus gasseri belongs to the Lactobacillus acidophilus group of LAB, which are natural inhabitants of the human intestinal tract (35), and many L. gasseri strains have been shown to produce bacteriocins (16, 20). Gassericin A was produced by L. gasseri LA39 isolated from the feces of a human infant; it has bactericidal activity against the food-borne pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus (16). Recently, using proteose peptone, some strains of L. gasseri containing LA39 were successfully cultured in reconstituted skim milk and cheese whey, where L. gasseri LA39 produced gassericin A; these low-cost, safe media could be used to improve the safety of biopreservation (1). Gassericin A has been purified and characterized, and its structural gene (gaaA) has been cloned and sequenced (21, 22). Determination of the complete chemical structure of gassericin A showed that the bacteriocin belongs to class IV and consists of 58 amino acid residues linked at the N and C termini (19). Little is known about the mechanisms of secretion and circularization of gassericin A and immunity to the circular bacteriocin.Here, we sequenced six genes surrounding gaaA thought to be related to production of and immunity to gassericin A and examined the homologous and heterologous expression of a small hydrophobic peptide, GaaI; we found that gaaI is an immunity gene providing protection against gassericin A.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号