首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phenotypic and Functional Characterization of Human Mammary Stem/Progenitor Cells in Long Term Culture
Authors:Devaveena Dey  Meera Saxena  Anurag N Paranjape  Visalakshi Krishnan  Rajashekhar Giraddi  M Vijaya Kumar  Geetashree Mukherjee  Annapoorni Rangarajan
Institution:1. Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.; 2. Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India.;McMaster University, Canada
Abstract:

Background

Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages.

Methodology

Single cell suspensions derived from human breast ‘organoids’ were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres.

Principal Findings

We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24low/CD44low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44high/CD24low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated β-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture.

Conclusions

Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号