首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Primary structure of guinea-pig Hageman factor: sequence around the cleavage site differs from the human molecule.
Authors:U Semba  T Yamamoto  T Kunisada  Y Shibuya  S Tanase  T Kambara  H Okabe
Institution:Department of Laboratory Medicine, School of Medicine, Kumamoto University, Japan.
Abstract:The guinea-pig and human Hageman factors differ in their sensitivity to activation by particular bacterial proteinases. To understand this difference, the primary structure and cleavage site on activation of the guinea-pig molecule were determined and compared with the human molecule. By the use of a synthetic oligodeoxyribonucleotide probe which encoded a part of human Hageman factor cDNA, a cDNA clone was isolated from a lambda gt11 cDNA library of guinea-pig liver and sequenced. The cDNA clone was identified as that of guinea-pig Hageman factor by the complete identity of the deduced amino-acid sequence with the actual sequence of the amino-terminal portion of guinea-pig Hageman factor molecule and the active form. The cDNA included part of a leader sequence and the entire coding region of the Hageman factor molecule. Guinea-pig Hageman factor was composed of the same domain structures as the human counterpart with an overall 72% homology in the amino-acid sequence. However, the sequences around the cleavage site were surprisingly different; -Met351-Thr-Arg-Val-Val-Gly-Gly-Leu-Val359-(human) and -Leu338-Ser-Arg-Ile-Val-Gly-Gly-Leu-Val346-(guinea-pig). The amino-acid substitutions around the cleavage site might explain the difference in sensitivity to activation between the human and guinea-pig molecules.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号