Yolk testosterone, postnatal growth and song in male canaries |
| |
Authors: | Müller Wendt Vergauwen Jonas Eens Marcel |
| |
Affiliation: | Department of Biology-Ethology, University of Antwerp, Belgium |
| |
Abstract: | Avian eggs contain substantial amounts of maternal yolk androgens, which have been shown to modulate offspring phenotype. The first studies on the functional consequences of maternal yolk androgens have focused on early life stages and their role in sibling competition. However, recent longitudinal studies reported long-lasting effects of maternal yolk androgens on offspring phenotype, mostly concerning traits that are sensitive to androgens. This suggests that maternal yolk androgens could play an important role in sexual selection, since the expression of many male sexual characters is testosterone-dependent. Using male canaries as a model, we examined the consequences of an experimental elevation of yolk testosterone concentrations on early development as well as long-lasting effects particularly on song, which is one of the most important sexual characters in male songbirds. Elevated yolk testosterone concentrations inhibited male growth, possibly in interaction with an existent ectoparasite exposure. Males hatched from testosterone-treated eggs (T-males) did not have enhanced competitive skills, in contrast to previous studies. The elevation of yolk testosterone concentrations delayed song development but did not affect adult song phenotype. This is intriguing, as yolk testosterone possibly induced developmental stress, which is known to reduce song quality. We hypothesize that yolk testosterone has either no direct effect on adult song phenotype, or that positive effects are merged by the negative effects of developmental stress. Finally, females mated with T-males invested more in their clutch indicating that females either assess T-males as more attractive (differential allocation hypothesis) or compensated for lower offspring viability (compensation hypothesis). |
| |
Keywords: | Maternal effects Sexual selection Developmental stress Bird song Mate choice Signal evolution Differential allocation Catch-up growth Early nutrition |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|