首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize: implications for root function during flooding
Authors:Rich Sarah Meghan  Ludwig Martha  Pedersen Ole  Colmer Timothy David
Institution:School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, WA 6009, Australia. sarah.rich@grs.uwa.edu.au
Abstract:? Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic roots during submergence. ? Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. ? Aquatic adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 μmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol m(-3) dissolved CO(2), aquatic roots fix carbon at 0.016 μmol CO(2) g(-1) DM s(-1). Illuminated aquatic roots do not rely on exogenous inputs of O(2). ? The photosynthetic ability of aquatic roots presumably offers an advantage to submerged M. brownii as aquatic roots, unlike sediment roots, need little O(2) and carbohydrate inputs from the shoot when illuminated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号