首页 | 本学科首页   官方微博 | 高级检索  
     


Phyto-adaptogens protect against environmental stress-induced death of embryos from the freshwater snail Lymnaea stagnalis.
Authors:E K Boon-Niermeijer  A van den Berg  G Wikman  F A Wiegant
Affiliation:Department of Molecular Cell Biology, Utrecht University, The Netherlands.
Abstract:The main purpose of the studies presented in this paper is twofold: 1) to evaluate whether phyto-adaptogens (Acanthopanax senticosus and Rhodiola rosea) are able to exert a protective action against stress-induced death of embryos of the pond snail Lymnaea stagnalis; and 2) whether a possible protective action by phyto-adaptogens can be explained by the induction of heat shock proteins. Enhancement in resistance by phyto-adaptogens was studied by applying plant extracts for a period of 20 hours to 3-day old larvae of the pond snail Lymnaea stagnalis. Subsequently they were exposed to a high and toxic dose of different environmental stressors. The following stress conditions were selected: a physical stress condition (heat shock: 43 degrees C for 4 minutes), an oxidative stress condition (superoxide radicals induced by menadione (600 microM for 2 hours)) and heavy metal-induced stress (copper (150 microM for 1 hour) or cadmium (20 microM during 1 hour)). Both Acanthopanax and Rhodiola exert a strong protective action against a lethal heat shock. These adaptogens also significantly protect against the negative effect of superoxide radicals as induced by menadione. With respect to the protective action against exposure to heavy metals a small but significant protection was observed against intoxication with copper or cadmium by the phyto-adaptogens. In summary, there appears to be a difference in efficiency in enhancing resistance to the various stress conditions used (heat shock>menadione>copper>cadmium). Based on the results presented in this paper, we can conclude that phyto-adaptogens are able to enhance the resistance against the different stress conditions tested in developing individuals of Lymnaea. Although the degree to which resistance is enhanced appears to depend on the type of stressor applied, our results confirm the definition of phyto-adaptogens as being universal enhancers of non-specific resistance against different kinds of stress conditions. With respect to the mechanism of enhanced resistance, the question was asked whether this protective action is caused by an induction of heat shock proteins (hsps), which are known to be involved in tolerance and adaptation. The phyto-adaptogens did not induce the synthesis of any of the hsps, nor did they modulate the normal heat shock induced synthesis of these stress proteins. We conclude that it is unlikely that hsps play a major role in obtaining an enhanced state of resistance provided by phyto-adaptogens.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号