Abstract: | New transient kinetic methods, which allow kinetics to be carried out under conditions of excess substrate, have been employed to investigate the kinetics of hydride transfer from NADH to aromatic aldehydes and from aromatic alcohols to NAD+ as a function of pH. The hydride transfer rate from 4-deuterio-NADH to beta-naphthaldehyde is nearly pH independent from pH 6.0 to pH 9.9; the isotope effect is also pH independent with kappa-H/kappaD congruent to 2.3. Likewise, the rate of oxidation of benzyl alcohol by NAD+ changes little with pH between pH 8.75 and pH 5.9; the isotope effect for this process is between 3.0 and 4.4. Earlier substituent effect studies on the reduction of aromatic aldehydes were consistent with electrophilic catalysis by either zinc or a protonic acid. The pH independence of hydride transfer is consistent with electrophilic catalysis by zinc since such catalysis by protonic acid (with a pK between 6.0 and 10.0) would show strong pH dependence. However, protonic acid catalysis cannot be excluded if the pKa of the acid catalyst in the ternary NADH-E-RCOH complex were smaller than 6.0 or smaller than 10.0. The two kinetic parameters changing significantly with pH are the kinetic binding constant for ternary complex formation with aromatic alcohol and the rate of dissociation of aromatic alcohols from enzyme. This is consistent with base-catalyzed removal of a proton from alcohol substrated and consequent acid catalysis of protonation of a zinc-alcoholate complex. The equilibrium constant for hydride transfer from benzaldehyde to benzyl alcohol at pH 8.75 is K-eq equals kappa-H/kappa-H equals 42; this constant has important consequences concerning subunit interactions during liver alcohol dehydrogenase catalysis. |