首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51
Authors:Datta H J  Chan P P  Vasquez K M  Gupta R C  Glazer P M
Institution:Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA.
Abstract:Triple helix-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner. Triple helix formation has been shown to stimulate recombination in mammalian cells in both episomal and chromosomal targets containing direct repeat sequences. Bifunctional oligonucleotides consisting of a recombination donor domain tethered to a TFO domain were found to mediate site-specific recombination in an intracellular SV40 vector target. To elucidate the mechanism of triplex-induced recombination, we have examined the ability of intermolecular triplexes to provoke recombination within plasmid substrates in human cell-free extracts. An assay for reversion of a point mutation in the supFG1 gene in the plasmid pSupFG1/G144C was established in which recombination in the extracts was detected upon transformation into indicator bacteria. A bifunctional oligonucleotide containing a 30-nucleotide TFO domain linked to a 40-nucleotide donor domain was found to mediate gene correction in vitro at a frequency of 46 x 10(-)5, at least 20-fold above background and over 4-fold greater than the donor segment alone. Physical linkage of the TFO to the donor was unnecessary, as co-mixture of separate TFO and donor segments also yielded elevated gene correction frequencies. When the recombination and repair proteins HsRad51 and XPA were depleted from the extracts using specific antibodies, the triplex-induced recombination was diminished, but was either partially or completely restored upon supplementation with the purified HsRad51 or XPA proteins, respectively. These results establish that triplex-induced, intermolecular recombination between plasmid targets and short fragments of homologous DNA can be detected in human cell extracts and that this process is dependent on both XPA and HsRad51.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号