首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro correction of antigen-induced immune suppression: effects of poly(A) poly(U) and prostaglandin E
Authors:E Mozes  G M Shearer  K L Melmon  H R Bourne
Affiliation:1. Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel;2. Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, University of California Medical Center, San Francisco, California 94122 USA
Abstract:Incubation of SJL or DBA/1 mouse spleen cells with poly(lTyr, lGlu)-polylPro—polylLys, (T, G)-Pro—L in vitro reduced the immune response potential of the cells to this immunogen as tested by adoptive transfer into irradiated, syngeneic recipients, followed by immunization with (T, G)-Pro—L in complete Freund's adjuvant. This reduction in immunocompetence was antigen-specific, since incubation with another antigen (rabbit immunoglobulin G) did not result in a suppression of responsiveness of the cells to subsequent in vivo immunization with (T, G)-Pro—L. Incubation of the spleen cell-(T, G)-Pro—L mixture in the presence of either prostaglandin E1(PGE1) or polyadenylic-polyuridylic acid (poly(A)·poly (U)) restored the immune response potential to the normal level. Incubation of (T, G)-Pro—L with spleen cells had no effect on cyclic AMP accumulation, whereas incubation of PGE1 with the cells stimulated cyclic AMP production, irrespective of the presence of antigens. In contrast, the level of cyclic AMP was not affected by poly(A) · poly(U). The difference in cyclic AMP accumulation suggests that PGE1 and poly(A) · poly(A) modify immune responsiveness by different mechanisms. The above observations were verified both in SJL and DBA/1 mice, which are the respective genetic high and low responders to (T, G) -Pro—L. This implies that the modifications of responsiveness described are not related to the genetic control of immune response to this immunogen.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号