首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Secondary structure forming propensity coupled with amphiphilicity is an optimal motif in a peptide or protein for association with chaperonin 60 (GroEL).
Authors:M Preuss  J P Hutchinson  A D Miller
Institution:Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College of Science, Technology and Medicine, London, UK.
Abstract:The interactions of GroEL with six dansyl peptides were investigated by means of our previously established fluorescence binding assay Hutchinson, J. P., Oldham, T. C., El-Thaher, T. S. H., and Miller, A. D. (1997) J. Chem. Soc., Perkin Trans. 2, 279-288]. Three peptides (AMPH series) were constructed with a hierarchy of alpha-helix-forming propensities and amphiphilic characteristics. The remaining three peptides (NON-AMPH series) were prepared with a reordered amino acid sequence designed to form peptides of differing non-amphiphilic alpha-helix-forming propensity. Of these six peptides, two (AMPH(+) and NON-AMPH(+)) were N-capped with an S-form alpha-helix-inducing template (Ro 47-1615, Hoffmann-La Roche), two (AMPH(-) and NON-AMPH(-)) were N-capped with an R-form non-inducing template (Ro 47-1614, Hoffmann-La Roche), and two (AMPH(R) and NON-AMPH(R)) were without N-cap modification. This paper describes how the known strength of interaction of an unfolded protein substrate with the molecular chaperone GroEL (K(d) micromolar to nanomolar) may be emulated with a single peptide (AMPH(+)) (apparent K(d) 5 nM) which has a high propensity to form an amphiphilic alpha-helical structure in solution. Secondary structure forming propensity is not, in and of itself, an important contributor to the strength of interaction with GroEL. However, secondary structure forming propensity coupled with amphiphilicity may be sufficient to account for most, if not all, of the interaction strength between GroEL and an unfolded peptide or protein substrate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号