首页 | 本学科首页   官方微博 | 高级检索  
     


Taking multiple infections of cells and recombination into account leads to small within-host effective-population-size estimates of HIV-1
Authors:Balagam Rajesh  Singh Vasantika  Sagi Aparna Raju  Dixit Narendra M
Affiliation:Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.
Abstract:Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, Ne, are widely varying. Models assuming HIV-1 evolution to be neutral estimate Ne∼102–104, smaller than the inverse mutation rate of HIV-1 (∼105), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates Ne>105, suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate Ne∼103–104, implying predominantly stochastic evolution. Interestingly, we find that Ne and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of Ne>105 reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with Ne∼103–104 may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号