Catalase plays a critical role in the CSF-independent survival of human macrophages via regulation of the expression of BCL-2 family |
| |
Authors: | Komuro Iwao Yasuda Tomoyoshi Iwamoto Aikichi Akagawa Kiyoko S |
| |
Affiliation: | Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan. |
| |
Abstract: | M-colony-stimulating factor (M-CSF)-induced monocyte-derived macrophages (M-Mphi) required continuous presence of M-CSF for their survival, and depletion of M-CSF from the culture induced apoptosis, whereas human alveolar macrophages (A-Mphi) and granulocyte-macrophage (GM)-CSF-induced monocyte-derived macrophages (GM-Mphi) survived even in the absence of CSF. The expression of BCL-2 was higher in M-Mphi, and M-CSF withdrawal down-regulated the expression. The expression of BCL-X(L) was higher in A-Mphi and GM-Mphi, and the expression was CSF-independent. The expression of MCL-1 and BAX were not different between M-Mphi and GM-Mphi and were CSF-independent. Down-regulation of the expression of BCL-2 and BCL-X(L) by RNA interference showed the important role of BCL-2 and BCL-X(L) in the survival of M-Mphi and GM-Mphi, respectively. Human erythrocyte catalase (HEC) and conditioned medium obtained from GM-Mphi or A-Mphi cultured in the absence of GM-CSF prevented the M-Mphi from apoptosis and restored the expression of BCL-2. The activity of the conditioned medium was abrogated by pretreatment with anti-HEC antibody. Anti-HEC antibody also induced the apoptosis of M-Mphi cultured in the presence of M-CSF and GM-Mphi and A-Mphi cultured in the presence or absence of GM-CSF and down-regulated the expression of BCL-2 and BCL-X(L) in these Mphis. GM-Mphi and A-Mphi, but not M-Mphi, can produce both extracellular catalase and cell-associated catalase in a CSF-independent manner. Intracellular glutathione levels were kept equivalent in these Mphis, both in the presence or absence of CSF. These results indicate a critical role of extracellular catalase in the survival of human macrophages via regulation of the expression of BCL-2 family genes. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|