首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of membrane potentials upon reversible protonation of acidic residues from the OmpF eyelet
Authors:Asandei Alina  Mereuta Loredana  Luchian Tudor
Institution:

a'Al. I. Cuza' University, Faculty of Physics, Laboratory of Biophysics & Medical Physics, Blvd. King Carol I, No. 11, Iasi, R-700506, Romania

Abstract:In this research we employed single-molecule electric recording techniques to investigate effects of the transmembrane and dipole potential on the reversible protonation of acidic residues from the constriction zone of the OmpF porin. Our results support the paradigm according to which the protonation state of aspartate 113 and glutamate 117 residues from the constriction region of OmpF is influenced by the electric potential profile, via an augmentation of the local concentration of protons near these residues mediated by increasing negative transmembrane potentials. We propose that at constant bulk pH, pKa values for proton bindings at these residues increase as the applied transmembrane potential increases in its negative values. Our data demonstrate that the apparent pKa for proton binding of the acidic aminoacids from the constriction region of OmpF is ionic strength-dependent, in the sense that a low ionic strength in the aqueous phase promotes the increase of the protonation reaction rate of such residues, at any given holding potential. Supplementary, we present evidence suggesting that lower values of the membrane dipole potential lead to an increase in the values of the ‘on’ rate of the eyelet acidic residues protonation, caused by an elevation of the local concentration of hydrogen ions. Altogether, these results come to support the paradigm according to which transmembrane and dipole potentials are critical parameters for the titration behavior of protein sites embedded lipid membranes.
Keywords:Single molecule recordings  Lipid membranes  OmpF  Spectral analysis  Membrane potentials  Protonation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号