Intraperiplasmic growth of Bdellovibrio bacteriovorus on heat-treated Escherichia coli. |
| |
Authors: | R B Hespell |
| |
Abstract: | Heat treatment (55 degrees C for 40 min) of cell suspensions in buffer (ca. 3 x 10(9) cells per ml) of Escherichia coli ML35 caused a 4- to 4.5-log loss of cell viability. Similar results were found for several other E. coli strains that were examined. As a result of this heat treatment, 260-nm- and 280-nm-absorbing materials were released into the suspending buffer, along with about 10% of the total cellular radioactivity, when cells uniformly labeled with (14)C were used. In comparison with untreated cells, heat-treated E. coli ML35 cells showed (i) no significant changes in macromolecular composition other than ca. 22% less RNA content, (ii) an increased permeability to o-nitrophenyl-beta-d-galactopyranoside (a compound to which untreated cells are impermeable), (iii) almost complete loss of respiratory potential, and (iv) substantial losses of numerous glycolytic enzyme activities in cell extracts prepared from these cells. Intraperiplasmic development of Bdellovibrio bacteriovorus 109J with heat-treated E. coli ML35 as substrate cells appeared normal when observed microscopically, although bdellovibrio attachment and resultant bdelloplast formation were slightly retarded. No significant changes were observed in cell yields or in the ratios and contents of DNA, RNA, or protein between bdellovibrios harvested from untreated cells and those from heat-treated substrate cells after single-developmental-cycle growth on these cells. The average Y(ATP) values for intraperiplasmic growth on untreated and heat-treated substrate cells were 16.0 and 17.9, respectively. It is concluded that intraperiplasmic bdellovibrio growth on gently heat-treated E. coli substrate cells is very similar to growth on untreated substrate cells, even though the former substrate cells are nonviable and substantially impaired in many metabolic activities. |
| |
Keywords: | |
|
|